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Abstract

By characterizing isomorphism in reciprocal space
[ie. diffraction data sets are isomorphous if they have
the same geometry (the same reciprocal-lattice unit
cell) and the same symmetry] it is shown that the
diffraction data of a native protein and of its heavy-
atom derivatives, the calculated data of a partial
structure and the observed data of its associated com-
plete structure, and the Friedel-pair data of an
anomalously scattering crystal structure all belong to
the more general class of isomorphous data sets. Their
joint probability distributions for two- and three-
phase structure invariants are shown to be isomor-
phous: they have the same functional form and differ
only in individual atomic scattering factors. General
joint probability distributions, which can be used for
any isomorphous data pairs, are presented.

1. Introduction

Isomorphism is usually defined in direct space as, for
example, the ‘similarity of crystal shape, unit-cell
dimensions, and structure between substances of
similar chemical composition’ (Glusker & Trueblood,
1985). For the present work, it is convenient to charac-
terize isomorphism in reciprocal space; i.e. diffraction
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data sets are isomorphous if they have the same
geometry (the same reciprocal-lattice unit cell) and
the same symmetry. Differences between isomor-
phous data are thus to be found in the intensities of
individual reflections, and therefore in the scattering
power of a subset of atoms. This allows us to consider
a variety of diffraction data sets as representing cases
of isomorphous data sets: for example, the diffraction
data of a native protein and of its heavy-atom deriva-
tives, the calculated data of a partial structure and
the observed data of its associated complete structure,
X-ray and neutron data measured on the same sub-
stance, and, finally, the Friedel-pair data of an
anomalously scattering crystal structure.

Through the use of the method of joint probability
distributions, formulae have been obtained to esti-
mate the value of two- and three-phase structure
invariants for the cases of isomorphous replacement
(Hauptman, 1982a; Giacovazzo, Cascarano & Zheng
Chao-de, 1988; Srinivasan & Parthasarathy, 1976),
anomalous  dispersion (Hauptman, 1982b;
Giacovazzo, 1983a) and partial/complete structure
(Beurskens, Prick, Doesburg & Gould, 1979;
Srinivasan & Parthasarathy, 1976; Giacovazzo,
1983b; Sim, 1959). "1 the present paper, it is shown
that the joint probability distributions are isomor-
phous: that is, they have the same functional form
and differ only in individual atomic scattering factors.
General joint probability distributions, which can be
used for any isomorphous data pairs, are presented.

© 1989 International Union of Crystallography



248

2. The probabilistic theory of the two-phase structure
invariant oy+ ¥y

Let f;u and gy represent atomic scattering factors for
a corresponding pair of isomorphous data sets in
space group P1 and let us define them in a general
way, so as to include the case where they are complex
numbers, i.e.

Sin=|ful exp (i8:y) (2.1)
gn = |gul exp (inn). (2.2)

The normalized structure factors, Ey and Gg, are
defined by

Ey= IEH| exp ipn

N
=ay’? Y fiuexp (2miH.r)) (2.3)
j=1
Gn=|Gal exp i
N
=Bua"? ¥ guexp(—2miH.r;) (2.4)
j=1
where
N =number of atoms in the unit cell, (2.5)
N N 2
=2 SnSfa= 2 | ful’, (2:6)
Jj= Jj=
N N )
Bu= Zl ngg;-"H= 'Zl ‘ngI . (2.7)
Jj= Jj=

Denote by P(R, S; @, ¥) the joint probability distri-
bution of the magnitudes |Ey|, |Gg| and the phases
oy, ¥ of the complex normalized structure factors
Ey, Gg. Then, following methods previously
described (Karle & Hauptman, 1958; Hauptman,
19824, b) we can write

P(R,S; &, ¥)=[RS/=*(1- Xi)] exp {{-R*- §?

+2XRS cos (P + ¥+ &y)]
x(1-XH)™"} (2.8)
where
XH (o0} fH = CH, XH sin §H = _SH (2.9)
Xu=(Ch+Sh)"%,  tanéy=-84/Cu (2.10)
N
Cu=an'’Bu'? L |ullgml cos (8u+ mu) - (2.11)
=
2 2 N N
Su=an"?Bu"? T |fullgml sin (§u+nm). (2.12)
j=1

The joint distribution thus obtained can be used for
any pair of isomorphous data sets by simply substitut-
ing, in each case, the appropriate scattering factors
as shown below.

PROBABILISTIC THEORY OF ISOMORPHOUS DATA SETS

Case 1. Native protein/heavy-atom-derivative data
sets (neglecting the effect of anomalous scattering)

When effects of anomalous scattering are not
included, we have

s=S (2.13)
and

v=-1. (2.14)

Furthermore, if it is assumed that the atomic scatter-
ing factors, as functions of (sin 6)/A, have the same
shape for different atoms then f; and gy are real and
equal to the atomic numbers Z;. Using the notation
of Hauptman (1982a) we obtain

CH=XH=011/0%20(1)£2=0 (2.15)
Su=0 (2.16)
=0 (217)
where
N
m =L LA™ gl" (2.18)
and

P(R,S; @, ¥)=[RS/ (1 — a?)]
x exp{—-[R*+5°-2aRS
xcos (@ —¥)]/(1-a?)} (2.19)
which corresponds to formula (2.4) of Hauptman
(1982a).
Case 2. Friedel-pair data of an anomalously scattering
crystal structure

In this case we have, using the notation of Haupt-
man (1982b),

R=S (2.20)
&=V (2.21)
fjH g]H (222)
and therefore
’ N
Cu=agn' ¥ |finl’ cos (28,n) (2.23)
j=1
N
Su=ag' ¥ |ful sin (26,). (2.24)
j=1

Xy and £y are defined by (2.9)-(2.10), and
xexp {{~R*-R’+2XRR

xcos (P+ P+ &)1/ (11— X3}
(2.25)

which corresponds to formula (2.10) of Hauptman
(1982b). We also note that Giacovazzo (1983a) has
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obtained a distribution which is identical except for
notation.

Case 3. Calculated data of a partial structure and
observed data of its associated complete structure
(neglecting the effect of anomalous scattering)

In the absence of anomalous scattering, we have
s=8 (2.26)
v=-1 (2.27)

Let P =number of atoms in the partial structure unit
cell and R = number of atoms ( N — P) in the remain-
der of the structure. Then

P 1/2 N 1/2
Cu=Xn =(z |f}|2) / ( z If,-lz) (2.28)
Jj=1 Jj=1
Su=0 (2.29)

&u=0. (2.30)

Using the notation of Beurskens, Prick, Doesburg &
Gould (1979) we have

p=(S18) " /(Er)” e
~(Sur)/(Sur)” e

P(R, S; @, ¥) =[RS/ 7*(r")]
xexp {{—R*—S*+2pRS
x cos(P — ¥)]/r?}. (2.33)

From (2.33), the conditional distribution of the struc-
ture invariant, 2 = @ — ¥, given the magnitudes R
and S, is easily obtained. The result

P(Q|RS) = [271o(2pRS/ )] ™!
x exp [(2pRS cos 2)/r*] (2.34)

can then be compared with equation (17) of Beur-
skens, Prick, Doesburg & Gould (1979). Related dis-
tributions were obtained by Srinivasan &
Parthasarathy (1976) and were also derived for struc-
ture factors (Sim, 1959; Srinivasan & Parthasarathy,
1976) and pseudo-normalized (partial structure)/nor-
malized (complete structure) structure factors
(Giacovazzo, 1983b). In each case, it can be shown
that the distributions can be obtained from the general
distribution (2.8) by proper selection of the scattering-
factor expressions.

and

3. The probabilistic theory of the three-phase
structure invariant

For a triplet of reciprocal-lattice vectors, H, K, L,
satisfying

H+K+L=0 (3.1)
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we consider the joint probability distribution
P(Rl, R2’ RS’ ST’ Si’ Sia ‘pl, ¢2, ¢35 ‘q,f, Wi, lI’i) Of
the magnitUdes |EH|, |EK|’ |ELI, |Gﬂl, |Gl_(l, IGl_.l and
the phaseS PH, Pk, PL> llfljb d’l—(’ ¢’I_, of the Complex
normalized structure factors Ey, Ex, E., Ga, Gk,
Gi. The normalized structure factors follow the
definitions given by (2.3) and (2.4) and, in particular,
include complex atomic scattering factors. Then by
following methods previously described (Hauptman,
1982b), we obtain

RiR,R;5:15:85

P=— 2 2 3

W(I_XH)(I_XK)(I_XL)
R§+s§_R§+s§_R§+s§)
1-X5 1-Xi 1-Xi
2R, 51X,
X ex [;zH
1- X3
2R2S§XK
1-X%

X exp (—
cos (P, + ¥i+ &)

cos (D, + W5+ &)

2R3S§XL
1- X3
2

e {(1—XL)<1—Xi>(1-Xi)

X [ZoR{R,R5 cos (D, + D, + D3~ {,)
+ Z}8;558;5 cos (Vi + s+ ¥3— (o)

+ Z,SiR,R; cos (—¥1+ D, + D3 — ()
+Z{R,S:S5c0s (—P,+ W5+ ¥5-{1)
+Z,R;S5R; cos (P, — W5+ P3— L)
+Z58;R,S5 cos (¥i— D, + W3- {3)
+ Z,R,R,S; cos (P, + &,— V35— {5)

cos (D5 + ¥5+ fL)]

+Z.S;S5R; cos (Wi+ W5 — P, — /;g)]}. (3.2)

The Z;, {;and Z}, {;,j=0, 1, 2, 3 are uniquely defined
by the equations
Zy exp (ily) = Dyuxr.— Dygr-DuDx Dy,
- DHKL'DL+ DH’K'LDHDK
- DHK'LDK+ DH'KL'DHDL

_DH’KLDH+DHK'L'DKDL9 (33)

Zy exp (ilo) = Dy — Dux.DuDx Dy,
— Dy DL+ DuxuDuDx
— Dy Dx + Dukr.Du Dy,

— Dy Du+ Dyxa Dk Dy, (3.4)
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Z, exp (iy) = ~DuxLDu+ Dux:Dx DL
+ DukDu DL — Dk Dk
+ Dy Dy Dy — Dy Do
+ DyuxL— Duk-DuDk Dy,
Z; exp (i{1) = = Dyx-Du+ Duxi. Dk Dy
+ Dy Du DL — Duki Dk
+ DykiDuDx — Dux . Do
+ Dukw — DuxkDuDg Dy,
Z, exp (i{3) = =Duxr Dx + Dux-Du Do
+ Duki Dk DL~ Dyux1LDu
+ DukL = DukDuDx Dy
+ DyxDuDx — Dug Dy,
Z; exp (i03) = = DuxDx t DukDuDy
+ Dk Dx DL — Duki-Du
+ Dy = Dukr Du Dk Dy,
* Dy DuDx — Dy Dy,
Z; exp (il3) = = DuxDLt Dy Du Dk
+ Dyukr = Dux.DuDx Dy
+ Duk'LDx DL~ Dy Du
+ DyxoDuDL— Dyk Dk,
Zj exp (if3) = =Duwr D+ D DuDx
+ Dy~ DukiDu Dy Dy
+ Dy Dx DL — Duk1.Du
+ Dykr Du Dy — Dyx. Dk,

where

Dykr= CuxLt+ iSHKL
1/2 3
=(apagar)” / Z [f_;H.’;Kf;Ll
Jj=1

xexp [i(8;n+ &+ 8;L)],

Dyxr = Cuxvt iSuxr
PP

= (BuBxBrL) / 'Z] |ngnggjL|
j=

xexp [i(nu+ nx+ 7)),

Dy = Cuxit iSuxL
-1/2 -
=(Buaxay) ) |ngijf;L|
j=1

X exp [i(_‘njH +oxt+ 6jL)]y

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Dyx = Cuxr+ iSux
2o
=(auBxBL)” / _Zl |fngngjL|
o

Xexp[i(_SjH+leK+ leL)], (3.13)

Dyxr= CukLt iSHK‘L
1/2 -
=(auBxar)” / ) |ﬁH8jK}}L|
j=1
xexp [i(8;n

- 7IjK+ ajL)]’ (3.14)

Dy = Cuxut iSuxr
2 o
=(BuaxPfL)” ! z] lngﬁxgle
j=

xexp [i(nu—8x+ )], (3.15)

Dyxr = CGuk T iSukL:
N
=(aHaKﬂL)‘]/2 z If;Hfjxgle
j=1

xexp [i(8n+ 8k
DyxL= CH’K'L+ iSux

- njL)], (3.16)

N
= (ﬂHﬂKaL)_]/z Z |ngngf_;’L|
Jj=1

xexp [{(mu+ nx—8)], (3.17)

DH= CH+ISH
R N
=(auBu) ™" L |fugml
j=1

x exp [i(8;+ nu)]- (3.18)

Dk and D, are defined in a similar way.
Xu and &y have already been defined [(2.9) and
(2.10)]. Xk, &, X and & are defined in a similar way.

Case 1. Native protein/ heavy-atom-derivative data
sets (neglecting the effect of anomalous scattering)

When effects of anomalous scattering are not
included, we have

Sl = Si, Sz = Si, S3 = Sj (3.19)
11’1 == q,ia IPQ == WZ ‘I/3 == ‘Ifi' (3'20)

The f; and g; are real and equal to the atomic numbers
Z;. Inthe notation of Hauptman (1982a), the D terms,
equations (3.10)-(3.20), become

DykL= ‘130/0%2 (3.21)

Dyxr = ags/ agy’ (3.22)

DyxrL= DukL= DuxL = azn/(azoa(l)éz) (3.23)
Dykr = Dyxr = DuxL= ‘112/(‘1%2‘102) (3.24)
Du=Dg=Dy=a,/(ax’a’)=a  (3.25)
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and the Z, {, Z', {' equations (3.3)-(3.9) become

_ . -3/2_-3 3 2
Zy= a3 "ag[azan —3aana;,

2 3
+3a 0007 — @374 ] (3.26)
r_ -3 _-3/2 3 2
Zy=azag [agazn—3aaza
2 3
+3ay axai — azai;] (3.27)

-2 - 2

Z,=2,=2,= 020201025/2[(“210'20“‘ Q30011) Ao,
—2(a 00— @21 01) @2y,

(3.28)

r_ r__ 1 . —5/2 =2 2
Z\=23=Z3=ay  ag[(aa0—aga)a

2
+ (003020_ 0120’11)0’11]

—2( a1 002 — @201) @201,

+ (3002 — a2|al])a¥1] (3.29)
bh=l=bL=li=L=01=0={:=0. (3.30)
Comparison of equations (3.34)-(3.37) with

equations (3.6)-(3.9) of Hauptman (1982a) shows
that

Zy=Bo(1—a?)® (3.31)
Zy=B5(1-a?)? (3.32)
Zy=2,=2Z;=,(1-a*) (3.33)
Z\=2Z4)=2Z4=B,(1-a?)’ (3.34)

and, finally, substituting in (3.2) we have

__RiR;R;S,8,S;

= 75(1-a?)?
xexp {[-1/(1-a?)]
x(R3+ R3+ R+ S?+ 82+ 89
+[2a/(1-a®][R,S, cos (®,— ¥,)
+ R, S, cos (P, — W¥,)+ R;S; cos (D — W5)]
+2BoR,R,R; cos (D, + P, + D)
+2B,[R R,S;cos (P, + D, + ¥3)
+ R,S;R; cos (P, + W, + D3)
+ S,R,R; cos (¥, + P, + Ps)]
+2B,[R,S,S;cos (P, + ¥, + V,)
+S,R,S; cos (¥, + @,+ ;)
+ 8,S,R; cos (¥, + ¥, + Ps5)]

+2855,5,S; cos (¥, + ¥, + ¥,)} (3.35)

which is equation (3.4) of Hauptman (1982a).
The distribution presented by Giacovazzo, Cas-
carano & Zheng Chao-de (1988) [their equation (3)]

is also readily obtained from (3.2). Indeed, the only
differences between the two distributions are in the

atomic scattering factors, which are real in the former
case and complex in the latter.

Case 2. Friedel-pair data of an anomalously scattering
crystal structure

In this case we have, using the notation of Haupt-
man (1982b),

Ri=5;, R;=S;, R3;= 85, (3.36)
Gi=V;, =Y D=1 (3.37)
fjH=ng, J;x=gjx, j_;‘ngjL- (3.38)

The D terms, equations (3.10)-(3.20), become

DHKL = Dyxr
-1/2 N
= (agagay) Z |f;Hf;x];L|
j=1

Xexp [i(61H+ 811(+ ajL)]’ (3.39)

Dy = Dygr
-1/2 N
=(ayagar) ) If;Hﬁxf}Ll
Jj=1

xexp [i(—=&u+8x+ )], (3.40)

DuykL= Dyxvr

N
={ayaxay) -2 Z:l lLHﬁKf;LI

xexp [i(§u— 8+ L)), (3.41)

Duyxr = Duxe
1/2 X
=(ayagay)” / Z |f;H];xf;L[
j=1

xexp [i(8u+ 8k — 6;.)], (3.42)

Dy=ag jgl |ful> exp [i(26;u)].  (3.43)
Dy and Dy are defined in a similar way.
The Z, £, Z', {' equations (3.3)-(3.9) become
Z, exp (o) = Zg exp (i)
= Dyko(1— DyDgD,)
+DHKL'(—DL+DHDK)
+ DHK'L(_DK+DHDL)
+DH’KL(_DH+DKDL)
Z, exp (il,) = Zy exp (if1)
= Dykr(— Dy + DxDy)
+ DHKL'(_DK+DHDL)
+ Duk(—Dp+ DuDx)
+ DH’KL(I - DHDKDL)’

(3.44)

(3.45)
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Z, exp (if;) = Z; exp (i3)
= Dyx(—Dg+ DuDy)
+ Dygp(—Dyu+ DgDy)
+ DykL(1— Dy Dk Dy )
+ Dyx(DL— Dy Dx),
Z; exp (il3) = Z3 exp (i{3)
= Dygo(—Dp+ Dy D)
+ Dyk(1— DuDx D)
+ Dyg(Du— Dk Dy)
+ Dyki(Dx— DuDy).

(3.46)

(3.47)

Finally, substituting in the general equation (3.2)
we obtain

~ R,R,R,R;R5R;
7*(1- X (1 - X1 - XD)
Xexp(_R%+I§_R§+RZ§_R§+Rz§)

1-Xy 1-Xgx 1-Xi

xexp {[2R,RiXy/(1 - X})] cos (@, + D; + &)
+[2R,R; X/ (1 - X )] cos (P, + D5+ £k)
+[2R;Rs X /(1 X{)] cos (@5 + P5+ &)}
xexp {2[(1- X{)(1-XR)(1-X])]™
X Zo[RiRyR; cos (P, + P, + D3~ ¢,)
+ RiR5R;5 cos (Pi+ D5+ P5—{,)]
+Z,[RiR;R;cos (— D1+ D, + D5 ¢))
+ R,R5R;5cos (— D+ D5+ P3—¢,)]
+Z,[RR5R;cos (D, — D5+ P;—-(,)
+ RiR,R;5 cos (D1— P, + P5—{,)]
+Z3[R\R,R;5 cos (P, + P, — P5—¢;3)
+ RiR5R; cos (P + @5 — D5 ¢5)]}.

(3.48)

The distribution corresponds to equation (1.4)
of Hauptman (1982b). Giacovazzo (1983a) has
obtained a distribution which is identical except for
notation.

Case 3. Calculated data of a partial structure and
observed data of its associated complete structure
(neglecting the effect of anomalous scattering)

The three-phase invariant joint probability distri-
bution was presented by Giacovazzo (1983b). The
formula was derived using normalized structure fac-
tors for the complete structure, and pseudo-normal-
ized structure factors for the partial structure. The

PROBABILISTIC THEORY OF ISOMORPHOUS DATA SETS

pseudo-normalized structure factors are defined by

Epn=FullFonl+X ()17 (3.49)
Eq.l- = Fq,h[le,h|2+Z (h)]_l/z (3-50)

where p =number of atoms in the partial structure
unit cell and

q=N-p, (3.51)
N
L= 3 Iffh. (3.52)

When effects of anomalous scattering are not
included, then the D terms, equations (3.10)-(3.18),
become

D= ¥ Uuafil/(auaxan) (359
D= % fnfiful/ (BubB)"  (354)
Dura= & U/ (Buoe)™ (359
D= 3 [ffful/ (anbub) > (3.56)
Duxr= % fufifil/(auxa)* (357
Diara: = 3. Ufinl/ (BueB)*  (358)
Diact:= % i ful/ (cona)!? (359
D= 3 ufifil/ (Bubxa)* (360

Duy= X = B . (3.61)

Similar expressions are found for Dg and D, .
The a’s and B’s are defined by (2.6)-(2.7). Note
that in this case By, for example, is simply
p
Y | ful (3.62)
j=1
The Z, {, Z', {' equations (3.3)-(3.9) become

N P
Y |fmfifil= T nfichul

2= (aHaKaL)l/Z ’ (3'63)
N p
S kil = T il
7! = _i=1 j=1
? (OIHOIK‘—"L)”2
X (3H3KBL)]/2/(0’H0’KO’L)1/2, (3.64)
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Z | fewfix il

)1/2

Z |foKfL|

(aHaKa

Z,= By all?,

(3.65)

Z | fefiw fl

)1/2

Z |foKfL|

(aHaKaL

X (BxBL)?/(agar)"?,
Z IfoKle Z |f;fofL|

(apaga )1/2

Z) =1

(3.66)

Z,=*

B/ a¥?,  (3.67)

T Unficfinl -

DRI A
Zé —i= Jj=1

(aHOll(OlL)l/2

X (BHﬁL)l/z/(anaL)l/z,
N P
.Zl lf_;Hf_;foL| - ‘zl MH]}KJS]J

Z3 = =
(aHal(aL)l/2

(3.68)

B2/ q1/2  (3.69)

'Zl |—f';Hij.f_;L| -

P
2 |fufifil
Z:’; 1= Jj=1

)1/2

(agagay,
X(ﬁnﬂx)l/z/(aﬂax)l/z
bo=8i=bh={i=6L=0=8G=¢(=0.

It should be noted that in the case of Z{ the expression
on the right-hand side is an approximation only. Its
validity [see Fortier, Weeks & Hauptman (1984a)
and Giacovazzo, Cascarano & Zheng Chao-de
(1988)] depends upon: (a) the total number of atoms
in the complete structure unit cell; (b) the difference
between the number of atoms in the partial and com-
plete structures; and (c¢) the dependence of the scat-
tering factors on the Bragg angle. The approximation
is used here for the sake of comparison with the
distribution presented by Giacovazzo (1983b). In
order to compare (3.2) with the results of Giacovazzo
(1983b) we also introduce pseudo-normalized struc-
ture factors for the partial structure,

(3.70)
(3.71)

R R R,
B Bl e
(3.72)
and
d’p1=*'f'1, ¢p2=_‘pz, ¢’p3=_‘lp3; (3.73)

and finally, as in Giacovazzo’s approach, we use
|F,ul’ rather than the average value Y7, fiy4
and, similarly, [|F,u4/*+Y,(h)] rather than
2:] l.fjH
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Equation (3.2) then becomes

P= Rl R2R3R1pR2pR3p
Wéb]bzb:,
X exp (_Rf+ Ri, Rit R§,_R§+R§P>
b, b, b,
X exp [(2R1R1p/b1) COos (d)l - d)lp)
+(2RyR;,/ by) cos (P, — D,,)
+(2R;3R;,/ bs) cos (D3 — Ps,)]

xexp {(2¢/b,b,b;)[ R, R,R; cos (P, + P, + D)
—R,R,,R;, cos (D, + P,, + Ps3,)

—R;,R,R; cos (D, ,+ D, + Ps)

+ R, Ry,R;, cos (P, + D,,+ D;,)

—RiR;,R; cos (P, + D,, + D,)

+ R,,R;R;, cos (P, + P, + D;,)

—R;R,R;, cos (P, + D)+ Dy,)

+Ry,Ry,R; cos (&, + By, + B,)]}. (3.74)

Equation (19) of Giacovazzo (1983b) is readily
obtained from this joint distribution. The definition
of the parameters ¢ and b;, i=1,2,3, can be found
in the Symbols and Abbreviations section of
Giacovazzo (1983b).

4. Concluding remarks

By characterizing isomorphism in reciprocal space,
it becomes clear that SIR (single isomorphous
replacement), SAS (single-wavelength anomalous
scattering) and partial/complete structure data sets
all belong to a more general class, that of isomorphous
data sets. We can thus obtain general formulae that
are applicable to any of these cases and, indeed,
general joint probability distributions are presented
here for two and three-phase structure invariants. The
similarities among the three cases have been recog-
nized before. For example, Srinivasan &
Parthasarathy (1976) clearly stated that the distribu-
tions they obtained for a ‘pair of crystal structures’
could be used for either SIR or partial/complete
structure data. Karle (1984, 1985), recognizing the
similarity in the mathematical and physical properties
of isomorphous-replacement and anomalous-scat-
tering diffraction data, presented formulae that can
be used with several sets of isomorphous data, several
sets of anomalous-scattering data or a combination
of both. Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao
Jia-xing (1984) also presented formulae to treat in a
unified manner the problem of phase ambiguities in
the SIR and SAS techniques.

Clearly, there are important differences between
the SIR, SAS and partial/complete structure cases.
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Because of these differences, the conditional proba-
bility distributions which will be of most use may
vary from one case to the other. Similarly, the phasing
procedures which will be most effective may vary
from one case to the other.

In this paper we have focused on the similarities
among these cases, for the following reasons. In a
direct-methods probabilistic approach, the derivation
of a joint probability distribution is often a lengthy
initial task. As shown here, this analysis need only
be done once, if it is formulated in a general way. It
is also an easy task to translate a distribution derived
for a specific case into more general terms. Con-
sequently, much of the already available theoretical
foundation for either SIR, SAS or partial/complete
structure data may be reformulated so that it can be
used in any example of isomorphous data sets. For
example, the joint probability distribution of a triplet
of isomorphous data sets (Fortier, Weeks & Haupt-
man, 1984b) can be translated easily into any case of
interest, such as the case of a native protein and a
single heavy-atom derivative for which Friedel-pair
data are available. Thus, as in the algebraic approach
presented by Karle (1984, 1985), general formulae

can be used on a large variety of combinations of the -

various cases. Finally, while there is still little
experience in the use of direct methods in
macromolecular structure determination, much valu-
able experience, both practical and theoretical, has
been gained in the use of direct methods for ab initio
phasing of isomorphous data sets in small molecules.
In particular, much can be learned from the vast
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amount of expertise that has been gained in the appli-
cations of direct methods to the problem of partial
structure expansion in the DIRDIF system (Beur-
skens et al., 1981).

Financial assistance from the Natural Sciences and
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acknowledged.
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Abstract

R factors in fiber diffraction are generally lower than
in conventional crystallography, because of the cylin-
drical averaging of fiber diffraction data. The proba-
bility distributions for fiber diffraction intensities,
analogous to Wilson's distributions for crystal diffrac-
tion intensities, are derived, and from these the largest
likely values of R are estimated. These values depend
on the size and symmetry of the diffracting particle
and on the resolution of the analysis, and range from
0-586 for systems for very high symmetry (as in crystal

0108-7673/89/030254-05%$03.00

diffraction) to much lower values for systems of low
symmetry.

Introduction

The R factor, R =Y || Fops| = | Feaicll/ Y. | Fobs|, has been
used for many years as an index of the quality of
crystallographic structure determinations. It is also
widely quoted in descriptions of structures deter-
mined by refinement of models against fiber diffrac-
tion data, although in fiber diffraction |F| must be
replaced by I'2. (In fiber diffraction, | F| is not gen-
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