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Abstract 

By characterizing isomorphism in reciprocal space 
[ i.e. diffraction data sets are isomorphous if they have 
the same geometry (the same reciprocal-lattice unit 
cell) and the same symmetry] it is shown that the 
diffraction data of a native protein and of its heavy- 
atom derivatives, the calculated data of a partial 
structure and the observed data of its associated com- 
plete structure, and the Friedel-pair data of an 
anomalously scattering crystal structure all belong to 
the more general class of isomorphous data sets. Their 
joint probability distributions for two- and three- 
phase structure invariants are shown to be isomor- 
phous: they have the same functional form and differ 
only in individual atomic scattering factors. General 
joint probability distributions, which can be used for 
any isomorphous data pairs, are presented. 

I. Introduction 

Isomorphism is usually defined in direct space as, for 
example, the 'similarity of crystal shape, unit-cell 
dimensions, and structure between substances of 
similar chemical composition' (Glusker & Trueblood, 
1985). For the present work, it is convenient to charac- 
terize isomorphism in reciprocal space; i.e. diffraction 
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data sets are isomorphous if they have the same 
geometry (the same reciprocal-lattice unit cell) and 
the same symmetry. Differences between isomor- 
phous data are thus to be found in the intensities of 
individual reflections, and therefore in the scattering 
power of a subset of atoms. This allows us to consider 
a variety of diffraction data sets as representing cases 
of isomorphous data sets: for example, the diffraction 
data of a native protein and of its heavy-atom deriva- 
tives, the calculated data of a partial structure and 
the observed data of its associated complete structure, 
X-ray and neutron data measured on the same sub- 
stance, and, finally, the Friedel-pair data of an 
anomalously scattering crystal structure. 

Through the use of the method of joint probability 
distributions, formulae have been obtained to esti- 
mate the value of two- and three-phase structure 
invariants for the cases of isomorphous replacement 
(Hauptman, 1982a; Giacovazzo, Cascarano & Zheng 
Chao-de, 1988; Srinivasan & Parthasarathy, 1976), 
anomalous dispersion (Hauptman, 1982b; 
Giacovazzo, 1983a) and partial/complete structure 
(Beurskens, Prick, Doesburg & Gould, 1979; 
Srinivasan & Parthasarathy, 1976; Giacovazzo, 
1983b; Sim, 1959). T-a the present paper, it is shown 
that the joint probability distributions are isomor- 
phous: that is, they have the same functional form 
and differ only in individual atomic scattering factors. 
General joint probability distributions, which can be 
used for any isomorphous data pairs, are presented. 
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248 PROBABILISTIC THEORY OF ISOMORPHOUS DATA SETS 

2. The probabilistic theory of the two-phase structure 
invariant ~p. + ~A 

Let fm and gm represent atomic scattering factors for 
a corresponding pair of isomorphous data sets in 
space group P1 and let us define them in a general 
way, so as to include the case where they are complex 
numbers, i.e. 

f m =  [fml exp (i3j.) (2.1) 

g.m = Ig,.I exp (il"/jtl). (2.2) 

The normalized structure factors, En and G~a, are 
defined by 

E .  = E .  I exp i~o. 

N 
= O~t-! 1/2 Z 

j = l  

G~ = IG~[ exp i0A 

N 
= ~;,/~ Z 

j = l  

where 

fm exp (2~-iH.rj) (2.3) 

gm exp (-27riH.rj)  (2.4) 

N = number of atorhs in the unit cell, (2.5) 

N N 

a n =  ~ f r a y * . =  ~ If .l =, (2.6) 
j = l  j = l  

N N 

/ 3 . =  2 grog*. = 2 gm 2. (2.7) 
j = l  j = t  

Denote by P(R, ,q; O, ~ )  the joint probability distri- 
bution of the magnitudes IE.I, IGnl and the phases 
~Pn, 0R of the complex normalized structure factors 
En, Gn. Then, following methods previously 
described (Karle & Hauptman, 1958; Hauptman, 
1982a, b) we can write 

P(R, ~q; O, ~)=[RS/Tr2(1 -X2)]exp{[ -R2-S2  

+ 2XRS cos (O + ~ + ~:.)] 

x ( l - X 2 )  - '  } (2.8) 

where 

Xn cos s~n = CH, Xn sin Ca = - S n  (2.9) 

X .  = (C~ + $2,) 1/2, tan E. = - S . / C ,  (2.10) 

N 

Cn=aH'/2fln '/2 2 fm gm c ° s ( 6 m + r b n )  (2.11) 
j = l  

N 

s . = ~ ' / 2 / 3 ~  '/2 E I£.llgj.I sin (6in+ rbn). (2.12) 
j = l  

The joint distribution thus obtained can be used for 
any pair of isomorphous data sets by simply substitut- 
ing, in each case, the appropriate scattering factors 
as shown below. 

Case 1. Native protein~heavy-atom-derivative data 
sets (neglecting the effect of anomalous scattering) 

When effects of anomalous scattering are not 
included, we have 

S = S  (2.13) 
and 

= - ~ .  (2.14) 

Furthermore, if it is assumed that the atomic scatter- 
ing factors, as functions of (sin 0)/,L have the same 
shape for different atoms then fn and gH are real and 
equal to the atomic numbers Zj. Using the notation 
of Hauptman (1982a) we obtain 

1/2,. ,1/2 
C H - -  X H  = Ce11/0¢20 ~"02 --  a 

where 

S . = 0  

~H = 0 

(2.15) 

(2.16) 

(2.17) 

N 

o,,.. = 2 If, lmlgj l"  (2.18) 
j = l  

and 

P(R,S; O, qt)=[RS/Tr2(1-a2)] 

x exp{-[  R 2 + S 2 - 2aRS 

xcos(O-~)] / (1-o~2)}  (2.19) 

which corresponds to formula (2.4) of Hauptman 
(1982a). 

Case 2. Friedel-pair data of an anomalously scattering 
crystal structure 

In this case we have, using the notation of Haupt- 
man (1982b), 

and therefore 

(2.20) 

q3= ~ (2.21) 

f m =  gm (2.22) 

N 

CH= O~H' ~ f j .  2 COS (28jH) (2.23) 
j - - I  

N 

S .  = a~ '  Y~ fm 2 sin (28m). (2.24) 
j = l  

Xn and ~:n are defined by (2.9)-(2.10), and 

P(R,/~;  O, ~)=[RR/7r2(1-X2)]  

x exp {[-R 2- ~2+ 2XRR 

xcos ( 0 +  45+ ~:.,)]/(1 - x ~ ) }  
(2.25) 

which corresponds to formula (2.10) of Hauptman 
(1982b). We also note that Giacovazzo (1983a) has 
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obtained a distribution which is identical except for 
notation. 

Case 3. Calculated data of a partial structure and 
observed data of its associated complete structure 
(neglecting the effect of anomalous scattering) 

In the absence of anomalous scattering, we have 

S = S  (2.26) 

= - ~ .  (2.27) 

Let P = number of atoms in the partial structure unit 
cell and R -- number of atoms (N  - P) in the remain- 
der of the structure. Then 

CH= XH=(j~=I [£ 2) I/2/(j~=I £ 2) I/2 (2.28) 

Su = 0 (2.29) 

~u=0 .  (2.30) 

Using the notation of Beurskens, Prick, Doesburg & 
Gould (1979) we have 

./=, ) / ~  If~ : (2.31) 

and 
P(R, S; qb, ~)=[RS/TrE(r2)] 

x e x p  { [ - R  2 -  S2+2pRS 

x c o s ( ~ -  W)]/r2}. (2.33) 

From (2.33), the conditional distribution of the struc- 
ture invariant, 12 = ~ -  aF, given the magnitudes R 
and $, is easily obtained. The result 

P(aIRS) = [27rlo(2pRS/rE)] - '  

xexp[(2pRScosO)/r 2] (2.34) 

can then be compared with equation (17) of Beur- 
skens, Prick, Doesburg & Gould (1979). Related dis- 
tributions were obtained by Srinivasan & 
Parthasarathy (1976) and were also derived for struc- 
ture factors (Sim, 1959; Srinivasan & Parthasarathy, 
1976) and pseudo-normalized (partial structure)/nor- 
malized (complete structure) structure factors 
(Giacovazzo, 1983b). In each case, it can be shown 
that the distributions can be obtained from the general 
distribution (2.8) by proper selection of the scattering- 
factor expressions. 

3.  T h e  p r o b a b i l i s t i c  t h e o r y  o f  the  t h r e e - p h a s e  

s t r u c t u r e  invar iant  

For a triplet of reciprocal-lattice vectors, H, K, L, 
satisfying 

H + K + L = 0  (3.1) 

we consider the joint probability distribution 
P(R,, RE, R3, Si, S~, S~; qO,, q02, q03, ~ ,  ~ ,  ~ ) o f  
the magnitudes IEul, IEKI, IEEI, IG.I, IG~I, IGd and 
the phases q~u, q~a, ~0L, ~ba, $~, ~bL of the complex 
normalized structure factors Eu,  Ea, EL, Gn, Ga, 
GL. The normalized structure factors follow the 
definitions given by (2.3) and (2.4) and, in particular, 
include complex atomic scattering factors. Then by 
following methods previously described (Hauptman,  

RIR2R3SiSIS~ p~_ 
7r6(1 - X2)(1 - X~:)(1 - X 2) 

t 2 2 2 2 xexp  R2+Si R2+S~ R3+$3~ 
1 - X ~  1 - X  2 -I~-X~LL] 

[2RISiXu 
x exp L l - - ~ n  cos (~ l  + ~i  + sen) 

2R2S~XK 
-t 1 - X ~  COS(q02+~+~:K) 

2RaS~XE ] 
+ 1 -  x---~ cos (~3 + ~ + ¢E) 

x exp (1 - X~)(1 - X~)(1 - X[ )  

x [ZoR1R2R3 cos ( I~ 1 + (I)2 + I~3 -- ~0) 

+z~,s~s~&cos(~+ ,I~+ ~ - ~;) 

+ZaSiR2R 3 cos ( -  x/ri+ tP2+ tP 3 - ~1) 

+ Z[R,S~S~ cos ( - ~ ,  + aft+ gr~_ ~ )  

+Z2RIS~R3 cos ( ~ 1 -  ~ +  ~ 3 -  if2) 

+ Z~STR2& cos ( ~ -  ¢'2 + ~ -  ~'~) 

+ Z3R,R2S~ cos (q~l + ~2 - ~ - ~3) 

+Z~SiS~R3cos(~i+ ~ - ~ 3 - ~ ) ] } .  (3.2) 

The Z~, ~j and Z~, ~'~,j = 0, 1, 2, 3 are uniquely defined 
by the equations 

Zo exp (i~'o) = DUKE- DH'K'E'DHDKDE 

-- DUKE, DE + DH,K,EDHD K 

-- D H K , E D  K + DH,KE, DHD E 
-- DH'KEDu + DHK,E, DKDL, (3.3) 

Z~ exp (i~'~) = DH'K'E'  -- DHKEDHDKDL 
-- DH,K,EDE + DHKE,DHDK 

-- DH,KE, D K + DHK,EDHDE 
-- DUK'E'Du + Dn'KEDKDE, (3.4) 

1982b), we obtain 
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where 

Z, exp (iff,) = - D H K L D  H + DH,K, L,DK D L 

+ DHKL, D H D  L -  DH,K,LD K 

+ DHg,LDHD K -- DH.gL.D L 

+ DH,KL--  DHK,L, DHDKDL, (3.5) 

Z'~ exp (i~',)=--DH.K.L.DH + DHKLDKDL 

+ DH,K,LDHD L -  DHKL, D K 

+ DH,KL, DHD K -- DHK,LD L 

+ DHK'L'-- DH'KLDHDKDL, (3.6) 

Z2 exp (iff2) = --DHKLDK+ DH'K'L, DHDL 

+ DHKL'DKDL-- DH'K'LD. 

+ DHK'L-- DH'KL'DHDKDL 

+ DH'KLDHDK-- DHK'L'DL, (3.7) 

Z~ exp ( i~'2) = --DH.K,L.DK + DHKLDHDL 

+ DH,K,LDKD L -- DHKL, D H 

+ D H , K L , -  D H K , L D H D K D  L 

+DHK'L'DHDK-- DH'KLDL, (3.8) 

Z3 exp (i~'3) = - - D H K L D L +  DH'wL'DHDK 

+ DHKL'- DH'K'LDHDKDL 

+ DHK'LDKDL-- DH'KL'DH 

+ DH'KLDHDL-- DHK'L'DK, 

Z~ exp (isr~) = --DH'K'L'DL + DHKLDHDK 

+ DH'K'L-- DHKL, DHDKDL 

+ DH'KL'DKDL-- DHK'LDH 

+DHK'L'DHDL-- DwKLDK, (3.9) 

DFIKL = CHKL + iSHKL 

N 
= (O~HO~KO~L) -1/2 E [fjHfjKfjC] 

j= l  

x exp [ i(SjH + 8jK + 8jL)], (3.10) 

DH,K, L, = CH,K, L, -F iSH,K, L, 

N 
= (~3H~K~L) -1/2 E g iHgjggjLI 

j= l  

Xexp[i(r l ja+TljK+T]jL)] ,  (3.11) 

DH,KL = CH,KL + iSH'KL 

N 
= (flH0~KO~L) -1/2 E gjHfjKfjC 

j= l  

Xexp[i(--njH+SjK+SjL)], (3.12) 

DHK, L, = CHK. L, + iSHK, L, 

N 
= (C~H~K/~L) -1/2 E fmgjg&LI 

j= l  

Xexp[ i ( - -~ jH+~jg+7] jg ) ] ,  ( 3 . 1 3 )  

DHK, L = CHK,L + iSHK' L 

N 
= (aH/3K~L) -'/2 E ]fmgjKfjLI 

j= l  

X e x p [ i ( ~ j a - - ~ j g + ~ j g ) ]  , ( 3 . 1 4 )  

DH.KL, = CH,KL, + iSH,KL' 

N 
-~- (~HO~K~L) -1/2 E ]gjHfjjggjL] 

j= l  

× exp [ i(rbH-- 8jg + rbL)], (3.15) 

DHK L, = CHK L, dl- iSHK L, 
N 

= (0~H0~K~L) -1/2 E fjHfjKgjL 
j= l  

Xexp[i( t~jS+t~jK--rl jg)] ,  ( 3 . 1 6 )  

DH'K'L = CH'K'L "~ iSH'K'L 

N 
= (~H~KOt~L) -1/2 E I&Hg~KfjL] 

j= l  

Xexp[i (~jH+TqjK--~jL)]  , ( 3 . 1 7 )  

D H = C H "-it" iS H 

N 
---- (O~H~H) -1/2 E [fro&HI 

j= l  

x exp [i(t~jH + ~ja)]" (3.18) 

DK and DL are defined in a similar way. 
XH and ~:n have already been defined [(2.9) and 

(2.10)]. XK, ~:K, XL and EL are defined in a similar way. 

Case 1. Native protein~heavy-atom-derivative data 
sets (neglecting the effect of anomalous scattering) 

When effects of anomalous scattering are not 
included, we have 

S, = ST, $2 = S~, $3 = S~ (3.19) 

• , = - ~ i ,  ~ 2 = - ~ ,  ~ / ' 3 - - ~ .  (3.20) 

The Ji and & are real and equal to the atomic numbers 
Zj. In the notation of Hauptman (1982a), the D terms, 
equations (3.10)-(3.20), become 

/ 3/2 
DHK L = O~30/O~20 

DH,K, L, = O~03 / O~ 3/2 02 
1/2 

DH,KL = DHK, L = DHK L, = 0~21/(0~200~02 ) 

= = = (~ ~o ~o~) DHK'L' DH'KL' DH'K'L •12/ 1/2 

De DK DL O~11/( 1/2 !/2~ = = = O1~20 O~02 ) = Od 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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and the Z, ~', Z ' ,  ~" equations (3.3)-(3.9) become 

..~ --3/2 .~, -3 I- Z 0 = ~.t 20 tx02 / 430432  . 3 4 2 , 4 2 2 4 , 1  

+ 3 4 1 2 a 0 2 4 2 1 -  403431]  ( 3 . 2 6 )  

Z~= -3 -3/2~ 3 -34,24~oa 420 402 1403420 11 
2 

+ 3 4 2 1 4 2 0 4  11 -- 430431]  (3.27) 

Z l = Z 2 = Z 3 = 424OfO25/2[(421420 - 430411)422  

- 2( 4 1 2 4 2 0 - -  421411)402411  

- 4,24,1)a ,,] (3.28) + (4030~20 2 

z~ = z~ = z~ =4~o-'/2 ~o2 [(4,24o~- 4o~4, , )~o -~ 

- 2 ( 4 2 1 4 o 2 -  4 ,2cq 1)42o4,~ 

+ (a3oao2- a2~a~l)a~] (3.29) 

~'o = ~'; = ~', = ~'[ = ~'~ = ~'~ = ~'3 = ~ = 0. (3.30) 

Comparison of equations (3.34)-(3.37) with 
equations (3.6)-(3.9) of Hauptman (1982a) shows 
that 

Zo = 13o(1 - 42 )  3 

Z 0  = / 3 3 ( 1  - 42 )  3 

Z, = Z2 = Z3 = 13,(1 - 42) 3 

Z~ = Z~  = Zt3 = / 3 2 ( 1 -  42) 3 

and, finally, substituting in (3.2) we have 

P = R, R2R3S, $2S3 
71"6(1 - 42)3 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

x exp { [ - 1 / ( 1 -  oe2)] 

x (R2+ R2+ R2+ $2+ $22+ $32) 

+[20e/(1-42)][R1 S, COS (~1-- a/t) 

+ R2S2 cos (@2 - gr2) + R3S3 COS ( (P3  - a / r3)]  

+ 2 f l o R  1 R 2 R  3 c o s  ( ~ 1  + (I)2 "It" (~3) 

+ 2/3,[ R,R2S3 cos (~ ,  + @2 + ~3) 

+ R , S 2 R  3 COS (rib 1 + 1//'2+ (~3) 

+S, R2R3 cos ( g q +  @2+ q53)] 

-t- 2 ~ 2  [ R , S 2 S  3 COS ( (~1 nt- a/t2 nt- 1/)'3) 

q - S 1 R 2 S  3 c o s  (1//, q.- 1~2 Of- 1/_/3) 

q- S ,  S 2 R  3 COS ( 1/.r + aft' 2 4- (/153) ] 

+ 2f l3S ,  S2S  3 COS ( ltr, + ~/~2 + 1/¢3)} ( 3 . 3 5 )  

which is equation (3.4) of Hauptman (1982a). 
The distribution presented by Giacovazzo, Cas- 

carano & Zheng Chao-de (1988) [their equation (3)] 
is also readily obtained from (3.2). Indeed, the only 
differences between the two distributions are in the 

atomic scattering factors, which are real in the former 
case and complex in the latter. 

Case 2. Friedel-pair data of an anomalously scattering 
crystal structure 

In this case we have, using the notation of Haupt- 
man (1982b), 

R~= &, R~= &, R~= &, (3.36) 

4~i= ~i ,  45~= ~ ,  4~3 = ~ ,  (3.37) 

f jH = gjH, fjjK = &K, f jL = gjL. (3.38) 

The D terms, equations (3.10)-(3.20), become 

DHK L = DH,K, L, 

N 
= (~H~K4,) -'/2 E £.fjK£~ 

j = l  

x exp [i(3jH + 6jK + 3jL)], (3.39) 

DH,KL = DHK, L, 

N 
= ( 4 8 4 ~ 4 , . )  - ' 2  X I f j a q ~ f .  

j=,  

x exp [ i ( - S m  + 8jK + ~jL)], (3.40) 

DHK, L = DH,KL, 

N 
= (4H4~4,.) -'/2 Z fj.fj~f.. 

s : ,  

x exp [ i ( S m -  8jK+ 3~L)] , (3.41) 

DHKL' = DH'WL 
N 

= ( 4 . 4 ~ 4 , )  -'/2 Z IfjHfj~f.. 
j = l  

x exp [ i(~m + 3j~¢- ~jL)], (3.42) 

N 
DH=a~I '  Y~ fin 2exp[i(28m)] .  (3.43) 

j = l  

DK and DL are defined in a similar way. 
The Z, ~', Z' ,  ~" equations (3.3)-(3.9) become 

Zo exp (i~'o) = Z ;  exp (i~r;) 

= DHKL(1 -- DnDKDL) 

+ D H K L ' ( - - D L  + DnDK) 

+ DHK'L( -- DK + DUDE) 

+ DH'KL(--DH + DKDL) (3.44) 

Z 1 exp (i~,) = Z~ exp (isr~) 

= DHKL(-- DH + DKDL) 

+ DHKL'(--DK + DHDL) 

+ DHK'L(-- DL + DHDK) 

+ DH'KL(1 -- DHDKDL), (3.45) 
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Z2 exp (i~'2) = Z~ exp (isr~) 

= DHKL(--DK+ DrlDL) 

+ DHKL'(--DH + DKDL) 

+ D H K , L ( 1  - -  DHDKDL) 

+ DH'KL(DE-- DHDK), (3.46) 

Zs exp (i~'3) = Z;  exp (i~';) 

= DnKL(--DL+ DHDK) 

+ DnKL'(1 -- DHDKDL) 

+ DHwL(DH- DKDL) 

+ Dn,~L(DK- DnDL). (3.47) 

Finally, substituting in the general equation (3.2) 
we obtain 

R1 R2R3RTR~R~ 
P= 

7r6(1 - X2)(1 - X2)(1 - X2L) 

( 2 2 R E + R ~  xexp R2+RT R2+R~ 
1 - X ~  1 - X~: i - - -X~  ] 

x exp {[2R, RTXH/(1 - X~)] cos (I~) 1 + ~1 "~- ~H) 

+ [2R2R~XK/(1 - X~)] cos (qb2 + q~2 + ~:a) 

+[2R3R~XL/(1 -X~)]  cos (@3 + qbJ3+ EL)} 

x exp {2[(1 - X~)(1 - X2)(1 - X~.)] -~ 

x Zo[R~RzR3 cos (@~ + qb2+ ~3 - ~'o) 

+ RTR~R~ cos ( ~ +  qb~+ ~ - ~'o)] 

+ Z I [ R I R 2 R  3 c o s  ( -  t ~ i +  r ib2+ t2b 3 - ~ ' 1 )  

+R~R~R~ cos ( - ~ +  ~ +  ~ -  ~)]  

+Z2[R~R~R 3 cos ( ~ -  ~ . +  ~ 3 -  ~'2) 

+ RiR2R~ cos (qbi-  qb2+ qb~- st2)] 

+ Z3[R~ R2R~ cos (qb~ + ~ 2 -  @~- ~'3) 

+ RiR~R 3 cos ( ~ i  + ~ -  qb3- st3)]} • (3.48) 

The distribution corresponds to equation (I.4) 
of Hauptman (1982b). Giacovazzo (19833) has 
obtained a distribution which is identical except for 
notation. 

Case 3. Calculated data of a partial structure and 
observed data of its associated complete structure 
(neglecting the effect of anomalous scattering) 

The three-phase invariant joint probability distri- 
bution was presented by Giacovazzo (1983b). The 
formula was derived using normalized structure fac- 
tors for the complete structure, and pseudo-normal- 
ized structure factors for the partial structure. The 

pseudo-normalized structure factors are defined by 

up.h= F,,,,,[IF,,.,,12 + Y (h)] -'/~ (3.49) 
q 

Eq.h = Fq, h[lFp, hl 2 + 5-'. (h)] - ',2 (3.50) 
q 

where p = number of atoms in the partial structure 
unit cell and 

q= N - p ,  (3.51) 

N 
f__,(h)= ~ I£lZ(h). (3.52) 
q j = p + l  

When effects of anomalous scattering are not 
included, then the D terms, equations (3.10)-(3.18), 
become 

N 

D.KL= Y 
j = l  

P 

D.'K'L' = Z 
j = l  

P 

D.'KL = Z 
=1 

I£H£,,£LII(~H~,,~L) '/~ (3.53) 

£ . £ , , £ L  I (/3./3~/3L) '/~ (3.54) 

fmfjKfjLl(/3naaaL) 1/z (3.55) 

P 
D~.L.= ~2 I£.£~f ,  I/(~./3K/3L) '/2 (3.56) 

j = l  

P 
O. L= E '/2 (3.57) 

j = l  

P 
OH',,L'= E Ifjafj,,£LI/(/3a':',,/3L) '/~ (3.58) 

j = l  

P 

O. ,L ,=  Y. If~.fj,£LI/(~H~/3L) '/' (3.59) 
j = l  

P 
O.,~,L= Z I£.£K£LI/(/3./3K~L) '/~ (3.60) 

j = l  

DH = XH =/3~2/a~2. (3.61) 

Similar expressions are found for DK and DL. 
The a ' s  and /3's are defined by (2.6)-(2.7). Note 

that in this case/38, for example, is simply 

p 
E Ifml 2. (3.62) 

j = l  

The Z, ~', Z' ,  ~" equations (3.3)-(3.9) become 

N 

Z o = J = l  j = l  (aaaKaL)l/z , (3.63) 

N p 

Y Ifj-f~K£LI--2 I£-fMjLI 
Z~-~ j=l j=l 

(O~H(~KaL) 1/2 

X (/3H/3K/3L) 1 / 2 / (  Ot!H O~K O!t) 1/2 , ( 3 . 6 4 )  
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Z 1 = 

N 
f j H f j K f j L -  ~ IfjHfjKfjL 

j=l  j=l  
(~H0gK01~L) 1/2 

Z~ = j = l  j=l 

( 01~H 0gK 0gL) 1/2 

z2= 

X (flKflL)1121 (araL)1/2, 

j=l  j=l  1/2/,,~ 1/2 
~ )/0~HO~K0£LXl/2 ~K /t~tK , 

Z; -J=~ j=1 

( 0t~H 0~K 01~L) 1/2 

X (~3HflL)1121 ( OpHO~L ) 1/2, 

.[fjHfjKfjLI-- ~,, fjHfjI~jL] 
j----1 j=l  

Z3 ~ 
(0gH0~KaL) 1/2 

,fl~21a~2, (3.65) 

fjHfjKfjL- ~ fjHfjKfjL 
Z~ j = l  j=l  

( 0~HIXK(XL) 1/2 

X (~H~K)1/2/(  O~i_i O~K ) 1/2, 

~'o = ~ '~= ~1 = ~'I = ~'2 = ~'~ = ~3 = ~'~ = o. 

(3.66) 

(3.67) 

(3.68) 

./:/1/2/~, 1/2 (3.69) /"L / ~ L  , 

(3.70) 

(3.71) 

It should be noted that in the case of Z~ the expression 
on the fight-hand side is an approximation only. Its 
validity [see Fortier, Weeks & Hauptman (1984a) 
and Giacovazzo, Cascarano & Zheng Chao-de 
(1988)] depends upon: (a) the total number of atoms 
in the complete structure unit cell; (b) the difference 
between the number of atoms in the partial and com- 
plete structures; and (c) the dependence of the scat- 
tering factors on the Bragg angle. The approximation 
is used here for the sake of comparison with the 
distribution presented by Giacovazzo (1983b). In 
order to compare (3.2) with the results of Giacovazzo 
(1983b) we also introduce pseudo-normalized struc- 
ture factors for the partial structure, 

R~l  R~2 R . 3  
1/2. 1/2 -- Sff., - S~ ~ 2 1 , ~ 2  - sT, ~,,  /,~,, ~L/2/,~L/2 

and 

(3.72) 

qbpl= - ~1, ~p2 = - ~ 2 ,  qbp3 = -  ~3; (3.73) 

and finally, as in Giacovazzo's approach, we use 
p 2 [Fp, a 2 rather than the average value ~ j = l f m  

and, similarly, [ Fp, HI2+~q (h)] rather than 
y ~  2 

~= 1 f jH. 

Equation (3.2) then becomes 

p = R1R2R3RlpR2pR3p 
,ff 6 bl bEb 3 

g + R2p g 2+R2p R 2+_REp~ 

x exp bl b2 b3 ] 

x exp [(2R1Rlp/bl) cos ( ~ 1 -  qblp) 

+ (2R2R2p/bE) COS (~2-- ~2p) 

+ (2R3R3p/b3) cos ( qb 3 - qbap)] 

x exp {(2C/blbEba)[RiRER3 cos (~1 + qb2+ qb3) 

-- R l p R E p R 3 p  cos ( t~lp + t~Ep + (~3p) 

- -  RlpR2R 3 cos (~lp + t~2 + t~3) 

+ R1R2pRap cos (tP 1 + (~2p + (Pap) 

- R1R2pR3 cos ( t~ 1 + ~2p + t~3) 

+ RIpR2R3p cos (t~lp + (])2"[- t~3p ) 

- R1R2Rap cos (~1 + qb2+ ~3p) 

+ R1pR2pR3 cos  ( t~lp + (~2p + (~3)]}- (3.74) 

Equation (19) of Giacovazzo (1983b) is readily 
obtained from this joint distribution. The definition 
of the parameters c and bi, i =  1, 2, 3, can be found 
in the Symbols and Abbreviations section of 
Giacovazzo ( 1983 b). 

4. Concluding remarks 

By characterizing isomorphism in reciprocal space, 
it becomes clear that SIR (single isomorphous 
replacement), SAS (single-wavelength anomalous 
scattering) and partial/complete structure data sets 
all belong to a more general class, that of isomorphous 
data sets. We can thus obtain general formulae that 
are applicable to any of these cases and, indeed, 
general joint probability distributions are presented 
here for two and three-phase structure invariants. The 
similarities among the three cases have been recog- 
nized before. For example, Srinivasan & 
Parthasarathy (1976) clearly stated that the distribu- 
tions they obtained for a 'pair of crystal structures' 
could be used for either SIR or partial/complete 
structure data. Karle (1984, 1985), recognizing the 
similarity in the mathematical and physical properties 
of isomorphous-replacement and anomalous-scat- 
tering diffraction data, presented formulae that can 
be used with several sets of isomorphous data, several 
sets of anomalous-scattering data or a combination 
of both. Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao 
Jia-xing (1984) also presented formulae to treat in a 
unified manner the problem of phase ambiguities in 
the SIR and SAS techniques. 

Clearly, there are important differences between 
the SIR, SAS and partial/complete structure cases. 
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Because of these differences, the conditional proba- 
bility distributions which will be of most use may 
vary from one case to the other. Similarly, the phasing 
procedures which will be most effective may vary 
from one case to the other. 

In this paper we have focused on the similarities 
among these cases, for the following reasons. In a 
direct-methods probabilistic approach, the derivation 
of a joint probability distribution is often a lengthy 
initial task. As shown here, this analysis need only 
be done once, if it is formulated in a general way. It 
is also an easy task to translate a distribution derived 
for a specific case into more general terms. Con- 
sequently, much of the already available theoretical 
foundation for either SIR, SAS or partial/complete 
structure data may be reformulated so that it can be 
used in any example of isomorphous data sets. For 
example, the joint probability distribution of a triplet 
of isomorphous data sets (Fortier, Weeks & Haupt- 
man, 1984b) can be translated easily into any case of 
interest, such as the case of a native protein and a 
single heavy-atom derivative for which Friedel-pair 
data are available. Thus, as in the algebraic approach 
presented by Karle (1984, 1985), general formulae 
can be used on a large variety of combinations of the 
various cases. Finally, while there is still little 
experience in the use of direct methods in 
macromolecular structure determination, much valu- 
able experience, both practical and theoretical, has 
been gained in the use of direct methods for ab initio 
phasing of isomorphous data sets in small molecules. 
In particular, much can be learned from the vast 

amount of expertise that has been gained in the appli- 
cations of direct methods to the problem of partial 
structure expansion in the D I R D I F  system (Beur- 
skens et al., 1981). 

Financial assistance from the Natural Sciences and 
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Abstract 

R factors in fiber diffraction are generally lower than 
in conventional crystallography, because of the cylin- 
drical averaging of fiber diffraction data. The proba- 
bility distributions for fiber diffraction intensities, 
analogous to Wilson's distributions for crystal diffrac- 
tion intensities, are derived, and from these the largest 
likely values of R are estimated. These values depend 
on the size and symmetry of the diffracting particle 
and on the resolution of the analysis, and range from 
0.586 for systems for very high symmetry (as in crystal 

diffraction) to much lower values for systems of low 
symmetry. 

Introduction 

The R factor, R = E IIFobsl- IFca,cll/Z IFobsl, has been 
used for many years as an index of the quality of 
crystallographic structure determinations. It is also 
widely quoted in descriptions of structures deter- 
mined by refinement of models against fiber diffrac- 
tion data, although in fiber diffraction IF[ must be 
replaced by 11/2. (In fiber diffraction, IFI is not gen- 
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